Bicarbonate Utilization Potential: pH Drift Studies

Dr. Robert Doyle and Ms. Sarah Hester HCP Science Committee Meeting

February 5, 2014

BAYLOR UNIVERSITY Center for Reservoir and Aquatic Systems Research

Applied Research: pH Drift Studies

- **Objective:** Determine which aquatic plant species are capable of HCO₃ utilization
- **Rationale:** Under low-flow conditions pH likely increases making CO₂ less available
- Approach: Assay plants under closed-system conditions and see how far they can "push" pH.
 - CO₂ obligates: Ps stops when CO₂ depleted
 - HCO₃ users: Ps continues to higher pH

Experimental Approach

Recall speciation of Dissolved Inorganic Carbon is pHdependent

As Ps takes place, DIC (=carbonic acid) utilized and pH rises

Ps vs. pH or CO_2 for TX wildrice (from Power & Doyle 2004)

- Use synthetic Ps solution (known alkalinity and carbon composition). Initial pH about 8.3 (not much CO₂ present).
- CO₂ depletion lowers total inorganic carbon (C_T) only modestly. HCO₃ use lowers C_T more strongly.
- Loss of CO₂ and HCO₃ does not change alkalinity as (OH⁻) replaces alkalinity lost.
- C_T:Alk ratio becomes sensitive measure of bicarbonate utilization potential.

- Plants collected from Comal analyzed under three culture conditions
 - Freshly collected plants (are plants utilizing bicarbonate under current *in situ* conditions>
 - Lab cultures amended with CO₂ (in culture- but plenty of CO₂ available)
 - Lab cultures without CO₂ (growth in CO₂ stressed conditions- can species be induced to utilize bicarbonate?
- In addition, plants from temperature threshold study (28 & 34 C cultures under low CO₂ conditions)

Analyses

Focus on major Comal species: *Hygrophila, Ludwigia, Cabomba, Vallisneria, Sagittaria* & bryophyte

Key response focus = final pH & C_T :Alk ratio

The "better" a species can use HCO_3 , the <u>higher</u> they can push (drift) pH and the <u>lower</u> the C_T :Alk ratio

One-way ANOVA will allow comparison among species & culture conditions.

Results

Example results for bicarbonate user (*Vallisneria*) and nonbicarbonate user (*Cabomba*).

Calculate CT:ALK ratio for highest pH (or pH where PS drops to zero)

Results

Cabomba

 \triangle Fresh \bigcirc Lab + CO2 \square Lab \triangle GH 28C \diamond GH 34C

Sagittaria

▲ Fresh OLab + CO2 □Lab

Δ

^^<u>^????????????</u>

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

8.0 C 3.0 C 4.0 C

0.2

0.0

C-:Alk Ratio

A) Riccia, Cabomba & Sagittaria

No evidence of bicarbonate utilization potential

B) Hygrophila & Ludwigia

Not (usually?) using bicarbonate now- but clear evidence of induced utilization

C) Vallisneria

Strong bicarbonate user

Results (one-way ANOVA)

A) Riccia, Cabomba & Sagittaria (not bicarbonate users)

B) Hygrophila & Ludwigia (utilization induced by CO₂ stress)

C) Vallisneria (strong bicarbonate user & get stronger under stress)

Summary

Study determined bicarbonate utilization potential for six key species within the Comal/SM system

3 species (*Riccia, Cabomba & Sagittaria*) are not using bicarbonate now and show no evidence that utilization can be induced.

2 species (*Hygrophila & Ludwigia*) not (?) using now- but clear evidence that utilization can be induced by CO_2 stress

1 species (Vallisneria) is a strong bicarbonate user and gets even stronger under CO_2 stress