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Overview

A Agent Based Model (Swannack)

A Hydraulic modeling (Hardy)

A Water quality modeling (Hardy)

A Percent Cover to Biomass study (Doyle)

A Aquatic Vegetation Modeling (Swannack)

A Food Source Analysis (Jackson)

A Fountain Darter Modeling (Wang and Grant)
A Overview of Key Decisions (Ward)

A Schedule and Next Steps (Oborny)
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Key Decisions

Agent Based Model
1 meter grids

Hydrology i Comal System

I gages not available on all segments over time i in particular the Old
Channel

Water Quality Model i Qual-2E
I Using flow contributions from the EARIP
I Not modeling nutrients or carbon dioxide
I Using maximum temperature and minimum dissolved oxygen
Aguatic Vegetation Modeling
I Percent Cover an appropriate surrogate for biomass
I Chose a subset of SAV species based on fountain darter statistical analysis
I Species specific propagation methods and mathematical expression
I Not including herbivory
Fountain Darter Modeling
I Food availability not limited T no macroinvertebrate sub-model
I Not using Macro scale in fountain darter analysis
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Conceptual overview of typical ecologic
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Conceptual overview of spatialxplicit,
agentbased model

A Captures individual variability, ecological and
physical processes in a dynamic, spatial
framework which can be used to test
scenarios/inform management decisions
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Computational Grids

AOriginal 0.25 meter
computational grids were
resampled to generate 1.0 meter
grids.

I No Interpolations

I Corresponding nodes were simply
extracted



City Park Study ReacHydraulic Grid:
1 Meter Resolution




with Spatially Joine
Vegetation Overlay




Interpolation of Hydraulic Grids for
Flow Rateg Old Channel

A The hydraulic solutions in the Old Channel
were used to linearly interpolate the hydraulic
properties at Icfsincrements between 10 and
80 cfs

A Cross checking of interpolated values to
simulated values resulted in less than a 3
percent MSE between simulated and
Interpolated values
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Comal Old Channel
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Comal Old Channel
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Comal Old Channel
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Comal - Old Channel

Parametric Tolerance Limit
Scotts Rule for Frequency Bins
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Calibrations

A Seasonal for Selected Years over the
Simulation Period

I Temperature
I Dissolved Oxygen
A Mixed Data Temporal density available

I Temperature
I Dissolved Oxygen



Simulations

A Hourly Temperature

A Hourly Dissolved Oxygen

A Extract Average and Maximum Daily Temperature
A Extract Average and Minimum Dissolved Oxygen

A Associate Temperature and Dissolved Oxygen
onto Computational Grid Locations

A Develop Simple Scenario Builder Interface for
Management and Simulation of Qual2E for future
management scenarios






